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[. INTRODUCTION, MOTIVATION, CENTRAL CONCEPTS

1.1. Introduction

Confirmation theory is intended to codify the evidential bearing of observations on
hypotheses, characterizing relations of inductive “support” and “counter-support” in
full generality. The central task is to understand what it means to say that datum E

confirms or supports a hypothesis H when E does not logically entail H.

While there were important investigations into confirmation theory by Bacon,
Whewell, Mill, and Duhem, the modern study of confirmation was pioneered by
Hempel (1945) and Carnap (1962). Given its importance to the philosophy of science
and epistemology, it is surprising that philosophy had to wait so long for well-developed
theories of confirmation. This may have been due to a general skepticism about the
possibility of inductive support stemming from Hume’s problem of induction. Hume
famously questioned our entitlement to infer things about the future from our
experience of the past, and his skeptical arguments can be generalized to cover all non-
deductive inferences. More recently, Popper’s deductivist philosophy of science has

been equally unfriendly to confirmation theory.

Yet the denial of non-deductive confirmation relations is tantamount to skepticism.
Without such relations, you have no right to infer the existence of an external world
from your perceptions, nor the existence of other minds from the existence of your own,
nor anything about your past from your apparent memories of it. Whatever its
philosophical credentials, confirmation theory is deeply rooted in commonsense, and

rational decision and science would be impossible without it.

1.2. Concepts of confirmation

Confirmation theorists countenance two relations of confirmation, characterized by



the following schemata:
absolute: H is highly supported given evidence E
incremental: E increases the evidential support for H.

Both notions assume a background of total evidence. ‘E is absolute evidence for H’
means that given E, the total evidence for H lies above some salient threshold. ‘E
incrementally confirms H’ means that adding E to the background data increases the
total evidence for H. It is important to recognize that E can be incremental evidence for
H without being absolute evidence for H, and conversely. For example, testing positive
for AIDS provides incremental evidence that you have AIDS, but it may not provide
absolute evidence: it may be more likely that the test has produced a false positive than

it is that you have AIDS.

The ordinary notion of ‘confirmation’ seems to involve both incremental and
absolute elements, neither fully accounting on its own for our speech or our practices.
Even so, we will focus largely on incremental confirmation, taking the notion of

absolute confirmation as understood.

II. THEORIES OF CONFIRMATION
I1.1. Qualitative confirmation

Hempel thought that the development of the “logic” of confirmation should proceed
in stages: qualitative, comparative, and quantitative. He encountered problems at the
first stage. In keeping with his logical empiricism, he sought to characterize
confirmation in largely deductive terms. His (1945) presents the following conditions as

prima facie plausible:
1. Entailment Condition: If E implies H, then E confirms H.

2. Special Consequence Condition: If E confirms H, and H implies H’, then E

also confirms H’.

3. Special Consistency Condition: If E confirms H, and H is incompatible with

H’, then E does not confirm H’.

4. Converse Consequence Condition: If E confirms H, and if H is implied by H’,



then E also confirms H'.

But, as Hempel recognized, any relation satisfying 1-4 will hold between every pair of
propositions, clearly an unacceptable result. (Actually, 1 and 4 jointly suffice for the
unacceptable result, as Moretti 2003 observes.) Hoping to preserve as much of 1-4 as
possible within a unitary account of confirmation, Hempel restricted 4 to cases where

H is obtained from H’ by instantiation, while maintaining 1-3.

Carnap (1962, new preface) argues that Hempel conflated incremental and absolute
confirmation. In any case, while 1-3 are plausible for absolute confirmation, 4 is not—
e.g., the fact that H is well supported given E does not imply that the conjunction of H
with some highly unlikely proposition is also well supported given E. The situation
regarding incremental confirmation is more nuanced. 3, a squarely ‘absolutist’
principle, clearly fails. 1, 2 and 4, which mix absolute and incrementalist intuitions,
hold only in special cases, albeit important ones: 1 fails when H is already known, but
otherwise holds. 2 breaks down when E increases the evidence for H while more
strongly decreasing the evidence for [{'& H , but it holds when E either supports or
is irrelevant to H'& H . 4 fails when E increases the evidence for H & H' while
decreasing the evidence for H’ by a smaller amount, but it holds when H'= H & X for
X an ‘irrelevant conjunct’ that is not evidentially germane to either H or E (Fitelson

2002).

IL.1.i. Instance confirmation and the ravens paradox

Hempel also endorses a famous condition that is prima facie plausible for

incremental confirmation, but completely implausible for absolute confirmation:

Nicod’s condition: All universal generalizations of the form °‘All F’s are G’ are

confirmed by all statements of the form ‘a is both F and G".

For example, it seems plausible that the report of a particular black raven incrementally
confirms the generalization ‘All ravens are black’, but implausible that the report

absolutely confirms the generalization.

A special case of 2 (and of 4), and compelling in its own right, is the



Equivalence Condition: If H is logically equivalent to H’, and E confirms H,

then E also confirms H'’.

Nicod’s condition and the equivalence condition yield Hempel’s notorious ravens
paradox. Since ‘All ravens are black’ is equivalent to ‘All non-black things are non-
ravens’, Nicod’s condition apparently entails that the latter generalization is confirmed
by the report of the observation of any non-black non-raven, e.g., a white shoe. But by
the equivalence condition, ‘All ravens are black’ is likewise confirmed by any such
report. This seems paradoxical: white shoes seem to have no evidential bearing

whatsoever on ornithological hypotheses.

Hempel embraces the paradox, arguing that our intuitions recoil only because we
know that there are far more non-black things than ravens. Confirmation relations, on
Hempel’s view, should presuppose no such background knowledge. Good (1967) replies
that a confirmation theory that ignores knowledge is of little interest to science. But
once we make confirmation a three-place relation, with background knowledge as the

third relatum, Nicod’s criterion plainly fails—see §1I.2.1.

Quine (1970) argues that Nicod’s criterion is false, insofar as it quantifies over all
predicates F and G. He insists that confirmation relations must be restricted to natural
kind predicates, those whose instances are objectively similar to each other. While
‘raven’ and ‘black’ are plausibly natural kind predicates, ‘non-raven’ and ‘non-black’
are not (their miscellaneous instances including electrons and quasars). Alternatively,
one might regard Quine as casting doubt on the Equivalence condition: while °‘All

ravens are black’ is apt for confirmation, ‘All non-black things are non-ravens’ is not.

As we shall see, such extreme remedies seem like overkill on probabilistic

approaches to confirmation. But first we must consider their best-known rival.

II.1.ii. H-D Confirmation

Hypothetico-deductivism is perhaps the most familiar and historically influential
confirmation theory. Its more sophisticated forms, e.g., Ayer (1936), are motivated by
the thought that a hypothesis is confirmed by data it entails, but are tempered by the
recognition that entailments between hypotheses and data are almost always mediated

by background knowledge (see Scientific Method).




H-D Confirmation. E incrementally confirms H iff there are true ‘“auxiliary
hypotheses™ Aj, As,..., A, such that (a) A, & A, & ...& A, does not entail E, while (b)
H&A&A & ...& A, entails E but not ~F.

Unfortunately, as Duhem already recognized in his (1905), auxiliary hypotheses that
figure in confirmation relations are, like the hypothesis under test, fallible conjectures
based on inconclusive evidence. This led Quine (1951) to insist that confirmation is
holistic, i.e., that evidence never confirms or disconfirms any hypothesis in isolation.
H-D confirmation is thus restricted to “total theories” with enough content to entail
observations on their own. While such total theories are confirmed by their empirical
consequences, their individual hypotheses are not. This has the unpalatable result that

there is no principled way to differentially distribute praise or blame over hypotheses.

Another serious challenge to hypothetico-deductvism, in either its holistic or

atomistic form, is the underdetermination of theory by evidence (see Scientific Method).

Moreover, the model does not address statistical hypotheses, since these have no
empirical consequences (e.g., any pattern of ‘heads’ and ‘tails’ is compatible with a
coin’s being fair). As these problems illustrate, H-D confirmation is not sufficiently
nuanced to isolate the evidential relationships we care about. For those we need to

invoke probabilities.

I1.2. Probabilistic Theories of Confirmation

I1.2.i. Probability theory and probabilistic measures of support

Probabilistic theories of confirmation assume that claims of confirmation and
disconfirmation must be evaluated relative to some probability function (or set of such
functions), which encodes all the background information relevant in a context of
inquiry. A probability function P is an assignment of real numbers to elements of some
set S of propositions, closed under negation and countable disjunction, obeying the

following axioms (for all A,B  §):

L  PA) 0
. PA ~A)=1.



II1. P(A B)= P(A)+ P(B) when A and B are contraries.
IV. The probability of A conditional on B is given by

P(AIB) = P(?f;)B), provided P(B)> 0.

If P encapsulates all of an agent’s opinions and background knowledge, then P(H)
reflects the total evidence for H based on her prior knowledge alone, while P(HIE)
reflects the evidence for H when E (and nothing else) is added to that knowledge. In
contrast, P(E) and P(EIH) convey information about E’s predictability: P(E) reflects E’s
predictability based on what is known; P(EIH) reflects its predictability when H (and
nothing else) is added to this knowledge. Conditional probabilities can thus be used to
reflect either the epistemic status of a hypothesis in light of potential data, or the

predictive power of the hypothesis with respect to that data.

Probabilistic theories represent increases in evidential support using relations of
probabilistic relevance and independence. At the qualitative level, the idea is that
confirming evidence raises the probability of a hypothesis, disconfirming evidence

lowers it, and irrelevant evidence leaves it unchanged:

Probabilistic Theory of Incremental Evidence (Qualitative).  Relative to
probability function P,

* Eincrementally confirms H iff P(H | E)> P(H)

+ Eincrementally disconfirms H iff P(H | E)< P(H )

* Eis evidentially irrelevant to H iff P(H | E)= P(H)

This simple theory has some appealing consequences:

* Evidence for a hypothesis is always evidence against its negation.

* Most H-D confirmation is probabilistic confirmation since P(HIE) exceeds P(H)

when H entails E unless P(H) or P(E) equal O or 1.

* FEincreases the evidence for H iff H increases E’s predictability.



The probabilistic approach also provides a useful framework for understanding the
effect of background information on confirmation. To see how, let’s revisit the raven

paradox. On a probabilistic picture, instance confirmation is straightforward.

Probabilistic-IC. Dx( F X Gx) is incrementally confirmed by

any learning experience in which (a) one of its logical instances ~ Fa Ga
becomes certain, (b) there was some positive prior probability that g is both F'
and ~G, and (c) nothing else of relevance is learned.

Intuitively, ~ Fg (Ga confirms H by ruling out a “live” counterexample in which

. Because it relies on a logically weaker notion of an instance,

Probabilistic-IC has significant advantages over Nicod’s Condition. Here are two:

» Given (a)-(c), ~ Fa Ga always confirms both DX( F X GX) and

[x(~ Gx ~ Fx).

» ~Fa Ga increases the evidential support for H only if there is a non-zero

probability that g is both F and ~G.

(c) deserves special attention since much of the raven paradox’s “paradoxicality” can
be traced directly to it. Probabilistic-IC implies that learning that some object is either a
non-raven or black, and nothing more, always raises the probability of H. But
experience often delivers additional information, whose effect on H’s probability can
vary greatly depending on the information encoded in P. Suppose we are sampling
birds, at random and with replacement, from a fixed population of 1000, and consider

the following states of prior knowledge:

(i). Either 950 birds are ravens but only 949 of these are black, or 10 birds are
ravens and all are black. (Good 1967)

(i1). 998 birds are black ravens. At least one of the other two is white, but it is

unknown whether either is a raven.

(iii). 900 birds are black ravens. All the others are white, but it is unknown

whether any are ravens.



(iv). There are 990 ravens, 980 already known to be black. Of the 20 remaining
birds either 10 are black ravens and 10 are white doves, or all are ravens, each

equally likely to be white or black.

(v). There are at most 50 ravens. Ten ravens have been found to be black. The

rest of the population is heterogeneous with respect to color.

Suppose that probabilities equal the corresponding proportions. In (i), observing
a black raven lowers H’s probability, whereas observing a non-black non-raven raises
H’s probability. In (i1), a non-black non-raven raises H’s probability. A black raven also
raises H’s probability, but less so. In (iii), a black raven does not alter H’s probability at
all, but something known only to be a non-black non-raven increases it. In (iv), a black
raven raises H’s probability slightly. Something known only to be neither black nor a
raven lowers H’s probability. But a white non-raven raises P(H) to 1! Case (v) is most
like the one in which we find ourselves. Observing either a black raven or a non-black
non-raven raises H’s probability, but since there are vastly more non-black things than

ravens, the increase is much greater for the first observation than for the second.

In all these cases, information beyond that found in ~ Rg Ba has a significant
impact on confirmation relations. Depending on the background information, such extra
information can alter the probability of the hypothesis in almost any way. Moreover,
this information can be about white shoes, red herrings, or anything else. For instance,
if we know that all ravens are black iff white shoes exist, then observing a white shoe
verifies the hypothesis. This does not, however, conflict with the intuition that ‘All
ravens are black’ can only be confirmed by evidence about ravens. Information about
non-ravens can, given the right background knowledge, also be evidence about ravens.

The raven paradox seems paradoxical only when we fail to appreciate this point.

The dependence of prior probability on background information also offers some
relief from the Quine/Duhem problem. Suppose that the conjunction of H and auxiliary

hypothesis A entails ~E, and that E is observed. Depending on P, E may:
* decrease H’s probability but not A’s (or vice versa);
* increase H’s probability but decrease A’s (or vice versa);

* decrease both H’s and A’s probability.



The question of which of these occurs depends on the prior probabilities of the four
conjunctions of H/~H and A/~A, and on the predictability of £ when these combinations

are assumed. See Earman (1992) for discussion.

Probabilistic approaches also facilitate discussion of confirmation in comparative

and quantitative terms through

P(HI|E) _ P(EIH)
P(H) P(E)

, when P(E), P(H ) > 0.

Bayes’ Theorem

The equation’s left side tracks the increase in H’s probability brought about by
conditioning on E. This is one way (among many) to measure the incremental
confirmation that E provides for H. The equation’s right side is a way of measuring the
marginal change in E’s predictability afforded by the supposition of H. The Theorem
thus formalizes the intuition that hypotheses are incrementally confirmed to the extent

that their predictions are borne out in experience.

Bayes’” Theorem reveals many facets of this “evidence/prediction duality”. For
example, it relates odds ratios to likelihood ratios. The odds of one hypothesis H
relative to another H* is the ratio of their probabilities O(H ,H*)= P(H )/ P(H*).
Odds conditional on E are defined as

O,(H.H*)= P(H | E)/ P(H* | E).

When P encodes the total background evidence, the odds ratio
O.(H ,H*)/O(H ,H*) measures the incremental change that E makes to the
disparity between the total evidence for H and the total evidence for H*. The likelihood
ratio P(EIH)/P(EIH*) is a way of expressing the relative disparity between H and H* in
incremental predictive power with respect to E. Bayes’ Theorem requires the likelihood

and odds ratios to coincide:
OE(H,H*)/O(H,H*) = P(E|H)/P(E| H¥*).

So, the degree to which E increases the disparity between the evidence for H and for H*
always coincides with the disparity between H and H*’s incremental predictive power

vis-a-vis E.



Probability theory provides many ways to say that conditioning on E increases H’s

probability. Here are four, where O(H )= O(H ,~ H):

Probability Odds
Incremental P(HI|E)>P(H) O,(H)>O(H)
Probative P(H | E)> P(H |~ E) O.(H)>0_.(H)

The columns correspond to two (intertranslatable) ways of quantifying uncertainty.

Its rows represent two ways of thinking about confirmation. Incremental relations,

which compare unconditional and conditional quantities, concern the degree to which

acquiring datum E will perturb the balance of total evidence for H above or below its

current value. Probative relations compare the “posterior” evidence for H when E is

added, to the “posterior” evidence for H when ~E is added. Here the issue is the extent

to which the total evidence for H varies with changes in E’s probability. When P(HIE)

and P(HI~E) are close together, changes in P(E) have little effect on P(H), but when

they are far apart such changes have a significant impact.

Depending on whether we express disparities in probabilities using ratios or

differences, each of these relations gives rise to two confirmation measures:

Probability Odds
Incremental P(HIE)/P(H) O(HIE)/O(H)
P.(H)- P(H) O(H | E)- O(H)
Probative P(HIE)/P(HI~E) O(HIE)/O(HI~E)
P.(H)- P (H

O(H | E)- O(H I~ E)

This is but a small sampling of the measures of evidential relevance that can be

defined. They have different formal properties and can seem to deliver incompatible




verdicts on particular cases. Consider, for example, the following constraints on

confirmation:

Law of Likelihood. E supports H more strongly than E supports H* iff
P(E|H)>P(E| H*).

Law of Conditional Probability. E supports H more strongly than E* supports
Hiff P(H | E)> P(H | E¥).

This first says that the comparative evidentiary import of a single datum for distinct
hypotheses is exclusively a matter of the degree to which the datum is predictable on the
basis of the hypotheses. The second says that the relative evidential impact of two items
of data for a single hypothesis is entirely a matter of the final probabilities of the
hypothesis given the data. Some measures satisfy the Law of Likelihood (e.g., both
probability ratio measures), but others violate it (e.g., both odds ratios). Some measures
obey the Law of Conditional Probability (e.g., both incremental ratio measures), but

others do not (e.g., both probative ratios).

In addition to satisfying different formal properties, measures can seem to disagree
about cases. Suppose that Ellen is a randomly chosen citizen of a town inhabited by 990
Baptists, 2 Catholics, and 8 Buddhists. Let H say that Ellen is not Buddhist. According
to all incremental measures, the datum E that Ellen is Baptist provides exactly the same
amount of evidence for H as does the datum E* that she is Catholic. The probative
measures disagree, saying Ellen’s being a Baptist provides a great deal of evidence for

H whereas the datum that she is Catholic provides hardly any.

Probabilists draw different morals at this point. Some, e.g. Eells and Fitelson (2002),
see the plethora of measures as posing a dilemma. Since the measures are not
equivalent, it seems that an adequate quantitative confirmation theory must either
choose among them or restrict its scope to cases where all reasonable confirmation
measures agree. One might then seek to identify some apparently necessary formal
conditions that adequate measures of confirmation must satisfy, and go on to prove that

one particular measure satisfies them. Milne (1996) argues for P(HIE)/P(H) in this



fashion. Likewise, Eells and Fitelson (2000, 2002) appeal to formal considerations,
including the Law of Conditional Probability, to rule out measures other than (log of)
the incremental odds ratio. Alternatively, one might despair of finding any one correct
measure and adhere only to claims about confirmation that are invariant under all

reasonable measures.

A third approach, advocated by Joyce (1999, 2004), denies that there is any problem.
Rather than being competitors, the various measures capture distinct, complementary
notions of evidential support. Recall Ellen. When the incremental measures say that E
and E* provide equal evidence for H, this only means that both items of data increase
the total evidence for H by the same increment, 1- P(H ). When the probative
measures say that E is better evidence than E* is for H, this means that the total
evidence for H, as it currently stands, depends much more on information about E’s
truth-value than on information about E*’s truth-value. (The disparity between
P(HIE)=1 and P(H |~ E)= 0.2 far exceeds the disparity between P(H | E*)=1
and P(H |~ E*)= 0.99198.) When understood this way, these claims clearly do not

conflict.

The distinction between incremental and probative evidence dissolves other issues in
probabilistic confirmation theory. Take the problem of old evidence (Glymour 1980):
explaining how someone who is certain or nearly certain of E, and who knows that H
entails E, can see E as evidence for H. Highly probable evidence often seems to have
great evidentiary value even when the values of P(E), P(EIH) and P(E|I~H) are nearly
identical, thus preventing any of the incremental measures of evidence from being large.
For example, when Einstein recognized that his new hypothesis of General Relativity
entailed the well-known anomalous advance of Mercury’s perihelion, he saw this ‘old
evidence’ as strongly supporting his theory. As Christensen (1999) and Joyce (1999)
suggest, the problem evaporates once we countenance more than one probabilistic
notion of evidential support.  Antecedently probable data cannot have much
incremental impact since they are already incorporated into the total evidence. They
can, however, still have great probative value: the total evidence for a hypothesis can

vary greatly depending on the data’s probability.

The contrast between incremental and probative evidence can be made more vivid by



the following principle:

Surprisingness. For fixed values of P(E\H) and P(H) with P(E| H)> P(E),

the degree to which E confirms H decreases with increases in P(E).

This is a precise formulation of the oft-heard idea that, ceteris paribus, hypotheses are
better confirmed by unlikely data than by likely data. Surprisingness is not, however, an
incontestable fact about confirmation: many philosophers have held that the prior
probability of data is irrelevant to their confirming power—see Hempel (1966, p. 38).
And people with disparate opinions about the probability of data often agree about
central aspects of their evidential significance. For example, on the basis of preliminary
examinations, one clinician might be almost certain that Josh has strep throat, while
another might deny this. The clinicians will also disagree about the probability of a
strep test on Josh yielding a positive result. But, even though the incremental impact of
the test data will be different for each clinician (in virtue of its different surprisingness
for them), they can still agree about the data’s probative value: both recognize that a
positive result, expected or not, will leave the hypothesis well supported, while a

negative result will leave it poorly supported.

IL.2.ii. How is P to be interpreted?

Any assessment of probabilistic confirmation theory must depend on the nature of
the probability functions that underlie the enterprise. Various interpretations might be
given to P. On a subjectivist ‘Bayesian’ reading, P captures the strengths of somebody’s
opinions: probabilistic confirmation theory concerns the doxastic states of individuals.
Many object to the use of subjective probabilities in confirmation theory on the grounds
that an individual’s credences have no place in science, since they are a function both of
her prior personal judgments and biases and the particular sequence of evidence she
happens to receive (see, e.g., Sober 2002).

In response, Bayesians often observe that the subjectivity of a probability does not
render it inaccurate or ill-founded. Credences of competent scientists are excellent
guides to the truth in most areas of inquiry. Bayesians sometimes seek to buttress these

remarks with ‘convergence theorems’ which show that, under certain conditions,



idiosyncratic differences in priors will tend to ‘wash out’ as the evidence increases, thus

making the probabilities more ‘objective’.

Some probabilists want more, however, and aim to provide P with an objective
interpretation that does not depend on what anyone happens to believe. The most

influential attempt to do this, in philosophical circles, is Carnap’s.

I1.2.iii. Logical probability: Carnap's program

The ‘logical interpretation’ of probability seeks to determine universally the degree
of confirmation that evidence E confers upon hypothesis H. Pioneered by Johnson,
Keynes, and developed most fully by Carnap, the goal is to provide an ‘inductive logic’

that generalizes entailment to ‘partial entailment’.

Carnap’s early (1950) systems begin with a first-order language containing a finite
number of monadic predicates and countably many individual constants. The most
detailed descriptions in the language—state descriptions—affirm or deny the
attribution of each predicate to each individual. For example, in a language containing

the predicate ‘F’ and the constants ‘a’, ‘b’, and ‘c’, the state descriptions are:

1. Fa& Fb& Fc 2. Fa& Fh& Fc

3. Fa& Fb& Fc 4. Fa& Fb& Fc

5. Fa&k Fb& Fc 6. Fa& Fb& Fc
7. Fa& Fb&Fc 8 Fa& Fb& Fc

The choice of a probability measure m for state-descriptions induces a ‘confirmation

function’:

m(H & E)
mE)  (m(E)>0).

c(H .E)=
A structure description is a disjunction of state descriptions that agree on how many
individuals instantiate each predicate. For example, the disjunction of state descriptions
2, 3, and 4 yields the structure description characterized as ‘two F’s, one =F’. Carnap’s
preferred measure, m*, gives equal weight to each structure description, these weights

in turn shared equally among the constituent state descriptions. In our example, there



are four structure descriptions, corresponding to

‘three F’s’,
‘two F’s, one —F’,
‘one F, two - F’s’

‘three —F’s’.

They each receive 1/4 of the probability, subdividing it equally internally. Thus, m*
assigns 1/4 to state descriptions 1 and 8, and 1/12 to the rest. In contrast to ¢, The
resulting confirmation function c* allows inductive learning: evidence of some
individuals’ having a property confirms other individuals’ having that property. For
instance, the a priori probability of Fais m* (Fa)=1/2. However,

c*(Fa& Fb)

c*(Fa,Fb)= o (Fb)

_1/3
T 1/2

=2/3.

so the evidence that Fb confirms the hypothesis that Fa.

While the early Carnap favored c* for its simplicity and salience, it is not obvious
that it is the unique confirmation function he sought, since infinitely many candidates
have this ‘inductive learning’ property. He later (1952) generalizes his confirmation
function to a continuum of functions c,. He considers languages containing sets of one-
place predicates such that, for each individual, exactly one member of each set applies.
He lays down a host of axioms of symmetry and inductive learning. They imply that, for
the set of predicates {P;}, i =1,2,....k, k> 2,

cy (individual n+1 is P;, n; of the first n individuals are P;)

= %% %1 where (<[ <

The bracketed fractions are respectively the proportion of observed ‘successes’, and the

symmetrically assigned a priori probability; their unbracketed weights sum to 1. A is an

index of ‘caution’: the higher it is, the less responsive is c, to evidence. At ) = (), we



have the inductively incautious ‘straight rule’ that simply equates the conditional
probabilities to the corresponding relative frequencies. At A= , we have the rigid
method that never learns from experience. In between we have the range of all
admissible inductive rules. Carnap regards the choice of A as a pragmatic matter,

something to be decided in a particular context.

Several problems for Carnap concern the languages over which his confirmation
functions are defined. These languages are clearly too impoverished to do justice to
much scientific theorizing; yet as they are enriched with further expressive power, the
confirmation relations change. Still more seriously, these relations are determined solely

by the syntax of the sentences—their meanings play no role.

The fact that meanings should play a role is one lesson of Goodman’s new riddle of
induction. Our evidence of observing many green emeralds surely confirms that
emeralds observed at any future time will be green. Now consider the predicate ‘grue’,
which applies to objects that are green and observed before some future time #, or blue
and not observed before t. Our evidence can be equivalently described as the
observation of many grue emeralds; but it does not confirm that emeralds observed
after ¢ will be grue—for that would mean that they are blue. The challenge for any
confirmation theory is to account for the differing confirmation relations that our
evidence bears to the ‘green’ and the ‘grue’ hypotheses. Any such theory must
apparently be sensitive to features beside syntactical form, since syntactically ‘green’

and ‘grue’ are on a par.

One might protest that ‘grue’ is somehow syntactically more complex than ‘green’—
after all, ‘grue’’s definition above involves a somewhat complicated disjunction. But
now define ‘bleen’, which applies to objects that are observed before ¢ and blue, or not
observed before ¢ and green. Then there is an alarming interdefinability of the
‘green/blue’ and the ‘grue/bleen’ vocabulary. In particular, an emerald is green iff it is
grue and observed before f, or bleen and not observed before . So what counts as a
‘complicated disjunction’ depends on which predicates we start with. Nor will it help to
claim that ‘grue’ is in some sense ‘gerrymandered’, or ‘positional’ (adverting as it does
to a particular time, f). For whatever these pejoratives may mean, the interdefinability

point will underwrite the same claims about ‘green’.



So Carnap’s languages apparently have to privilege certain predicates over others—
presumably outlawing monstrosities such as ‘grue’. It is hard to see how this can have
any basis in logic, and how this privileging could be done in a principled way.
Goodman, for example, appeals to the somewhat nebulous notion of entrenchment: a
predicate is entrenched iff we have used it in successful inductive inferences in the past.
But our commonsense predicates are often better entrenched than those of science; that

is hardly a reason to favor the former when making predictions.

Finally, return to the dependence of Carnap’s confirmation functions on the
parameter A. Nothing in logic determines, or even constrains, its value. Carnap thought
that it might be determined empirically, but the bearing of empirical data on its value is
itself a problem of confirmation, and an infinite regress threatens. This problem is only
exacerbated for the late Carnap (1971), when he generalizes his system further to
include analogical considerations. This involves a further parameter over whose setting
there is again much freedom, and certainly no constraint from logic. We have thus come

a long way from his initial hope for a unique confirmation function.

III. coNcLuSsIONS

We began by noting how little of our reasoning is captured by deductive logic, and
how there is an apparent need for confirmation theory. Carnap’s ‘inductive logic’ was
intended to assimilate confirmation theory to deductive logic. To be sure, confirmation
theory does bear some interesting analogies to deductive logic: it is not a matter of the
truth of some piece of evidence E, nor of some hypothesis H, but rather of the bearing
that £ has on H. But we have learned that there are apparently some important

disanalogies. Unlike deductive entailment,
* Confirmation relations come in varying degrees.

* The relations cannot be captured purely syntactically: meanings of terms are

important.
* The relations may not be uniquely constrained.

* They apparently involve at least a 3-place relation, between an evidence

sentence E, a hypothesis H, and background knowledge K (which may be



captured in a probability function P).

That said, we side with Carnap, and against Hume and Popper, in insisting that relations
of confirmation may be non-trivial, of importance to science, philosophy, and daily life,

and susceptible to genuine illumination.'

! We thank Martin Curd, Franz Huber and Stathis Psillos for very helpful comments on
earlier drafts.
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